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Opinion
Counterintuitively, biases in behavior or cognition can
improve decision making. Under conditions of uncer-
tainty and asymmetric costs of ‘false-positive’ and ‘false-
negative’ errors, biases can lead to mistakes in one
direction but – in so doing – steer us away from more
costly mistakes in the other direction. For example, we
sometimes think sticks are snakes (which is harmless),
but rarely that snakes are sticks (which can be deadly).
We suggest that ‘error management’ biases: (i) have
been independently identified by multiple interdisciplin-
ary studies, suggesting the phenomenon is robust
across domains, disciplines, and methodologies; (ii) rep-
resent a general feature of life, with common sources of
variation; and (iii) offer an explanation, in error manage-
ment theory (EMT), for the evolution of cognitive biases
as the best way to manage errors under cognitive and
evolutionary constraints.

The ubiquity of error
All of us face the problem of balancing the potential costs of
alternative decisions in everyday life. Should you risk a
detour to avoid traffic? Should you bother paying for travel
insurance? Should you put your savings in the bank or the
stock market? Such dilemmas occur whenever decisions
are made under uncertainty and alternative outcomes are
likely to incur different costs – a common scenario in which
many of our decisions turn out to be wrong. The problem is
not new. Humans and other organisms have had to deal
with balancing risks for millions of years [1–6] and there is
evidence that we have evolved specific biases that help to
minimize the costs of mistakes over time. Recent work in a
range of disciplines invokes the same logic and we suggest
that all such decision-making problems fall under the
unifying theoretical framework of error management.

Error management is important because how people tend
to balance alternative possible errors, as well as how they
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should balance these errors, has consequences for a range of
challenges of the 21st century, spanning medicine (e.g.,
whether and how to treat cancer), public policy (e.g., how
to invest pension funds), engineering (e.g., what magnitude
of earthquakes nuclear facilities should be built to with-
stand), international security (e.g., when to act against
states that might be developing nuclear weapons), and
climate change (e.g., how much to invest in or how to enforce
carbon emission reductions). In 2000, Swets et al. lamented
that error management techniques were ‘virtually unknown
and unused’ in many fields, despite offering an extremely
valuable way of improving decision making [7].

In the following sections, we: (i) outline the logic of
biased decisions as adaptive; (ii) introduce EMT; (iii) ex-
plain why humans would have needed to evolve biases to
achieve adaptive behavior; (iv) present a range of interdis-
ciplinary studies identifying the phenomenon of error
management; (v) consider error management’s scope as
a unifying framework for understanding a wide range of
judgment and decision-making problems; and (vi) offer an
explanation for why there have been fundamental differ-
ences of opinion among scholars on the evolution of biases.

Biased decisions as adaptive
In recent decades, economists and psychologists have docu-
mented a long list of biases in human judgment and decision
making [8–11], with important consequences for economics,
politics, and society [12–14]. Rather than being mere quirks
of human nature, however, there is growing evidence that
these biases represent adaptive solutions to the decision-
making problems of our evolutionary past [15–18]. Evolu-
tionary biology therefore has an important role to play in
understanding decision-making biases, especially given
that their underlying logic has long been examined by
ethologists and ecologists [4,5,19–22]. For example, when
resources are plentiful and dangers scarce, organisms
should avoid risky decisions, just as standard economic
models would predict [23]. However, when starvation or
other dangers threaten survival (and thus expected repro-
ductive value, in the eyes of evolution), selection can favor
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Table 1. The four possible combinations of beliefs about the
world (X) and actual states of the world (giving rise to two
different types of error)

Actual

X Not X

Belief X Correct False-positive error

Not X False-negative error Correct
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organisms (or strategies) that take whatever risks might be
necessary to give them a chance of life rather than death.
These strategies do not necessarily maximize expected pay-
offs (of, say, food). Instead, they maximize Darwinian fitness,
which can be a nonlinear function of expected payoffs [4].
Hence, judgment and decision-making ‘biases’ (as judged by
comparison with standard economic models) can be
expected and appear to be primarily geared toward the
management of alternative errors.

What is Error Management Theory (EMT)?
A decision can be wrong in two ways (Table 1). It can
assume X when not-X is true (a false positive) or not-X
when X is true (a false negative). The principle of error
management suggests that, under uncertainty (that is,
where the true probability of outcomes cannot be precisely
predicted), and if the costs of false-positive and false-nega-
tive errors are different, an effective decision-making strat-
egy can be a bias toward making the least costly error over
time (a generalized illustration is given in Figure 1). The
conditions for error management might seem limiting, but
are common to a wide range of decision problems; the true
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Figure 1. A generalized illustration of error management showing how changes in

the probability (y-axis) or relative benefits (x-axis) of outcomes can affect biases.

The curve depicts the probability of success of some decision over a range of

benefits and costs. Where benefits exceed costs, overestimating the true

probability constitutes an assessment error but nevertheless leads to the ‘right’

decision (e.g., to decide to act when the odds are favorable). By contrast,

underestimating the true probability also constitutes an assessment error, but this

time leads to the ‘wrong’ decision (e.g., to decide not to act despite the odds being

favorable). This logic is reversed where costs exceed benefits. In general, when the

probability of positive outcomes and/or the relative benefits are low, risky behavior

should decrease and actors should engage in more conservative ‘better safe than

sorry’ behavior. As the probability of positive outcomes and/or the relative benefits

increase, risky behavior should increase and actors should engage in bolder

‘nothing ventured, nothing gained’ behavior.
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probability of outcomes is rarely known precisely and
different outcomes are unlikely to have identical costs.

Error management as an general engineering principle

Smoke alarms provide an illustrative example of error
management as a general principle of engineering [24].
Smoke alarms are deliberately set to go off what might seem
to be ‘too often’ (sometimes they go off when you burn your
toast), but this is only to avoid making a much worse error in
the other direction (failing to go off when there is a real fire).
Because there is uncertainty in the signal (the aerial parti-
culates might appear similar to the smoke alarm in the two
cases), the only way to make sure all genuine fires are
detected is to set alarms to be extremely sensitive – we give
them a bias. We might think the alarm has been set to be ‘too
sensitive’, but they are set to go off just the right amount,
given the available data on the dangers of real fires.

Error management as an evolved heuristic to exploit the

engineering principle

Error management theory (EMT) attracted particular atten-
tion (and the term was coined) when it was applied to explain
decision-making biases in humans. If decision-making errors
had asymmetric costs over human evolutionary history,
natural selection might have favored cognitive biases that
minimized whichever mistakes incurred the greatest costs
[15,24,25]. This intriguing logic led to a number of studies
that proposed a role for EMT in explaining puzzling empiri-
cal biases such as sex differences in dating behavior [26,27],
overoptimism [28], cooperation toward strangers [29], and
belief in supernatural agents [30].

Note that although EMT focuses on costs, benefits are
not ignored. It is the net payoffs – costs plus benefits – of
false-negative and false-positive decisions that matter.
EMT predicts a bias in whichever direction maximizes
fitness. This tends to be worded in the EMT literature
as ‘minimizing costs’ and this is a legacy of the original
puzzle: how can we explain apparently costly behaviors in
adaptive terms?

Why do we need biases to achieve adaptive behavior?
If we are aiming to assess the true probability of some
event (e.g., whether a car is coming when we cross the
road), but there is uncertainty in this probability, mistakes
can occur in both directions – that is, sometimes assuming
a car is coming when one is not or sometimes assuming no
cars are coming when one is. A potentially efficient way to
avoid the latter, much more catastrophic error is to develop
a bias to act as if a car is coming whenever we cross the
road [31]. Recent work shows that the asymmetry of costs
does not have to be large to favor a bias [32,33]. Although
this example suggests why a bias can be beneficial, it is
insufficient to identify the cause of such a bias.

Adaptive behavioral biases

If one could accurately estimate the costs and probabilities
of events, one could manage errors through ‘cautious-ac-
tion policies’ [31] (one form of which is Bayesian updating
[22,32]). For example, we might develop a behavior to look
before crossing the street not because we have an in-built
fear of cars but because we calculate, learn, or discover that
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the costs of failing to do so are severe and we adjust our
behavior accordingly – investing considerable time to look
even when no cars are close. To a third party, this behav-
ioral bias may appear to be ‘economically irrational’ be-
cause we are consistently wasting time worrying about an
event that rarely happens, but if it helps us to maximize
our chance of survival (and reproduction), it is ‘adaptively
rational’. In other words, our behavior is not tuned to fit a
model of expected payoffs, but a model of expected fitness.
For this reason, a behavior that seems ‘biased’ would not
seem biased if we had complete information about the
consequences of those actions for survival and reproduc-
tion. Short-term costs can have long-term gains and may be
measured in different currencies.

Adaptive cognitive biases

To understand why we need a cognitive bias – one that
skews our assessments away from an objective perception
of information – we need to pay attention to cognitive
constraints (the limitations of brains as decision-making
machines) and evolutionary constraints (natural selection
as an imperfect designer).

Decisions involve a complex array of variables and we
are often unable to keep track of accurate statistical infor-
mation about the probabilities and costs of false-positive
and false-negative errors (we might not even correctly
perceive errors, let alone their future fitness consequences,
when they occur). Even if we did have such information, the
processing of multiple relevant variables would be cogni-
tively taxing and itself subject to error. Natural selection,
therefore, might have favored biases that circumvent the
complex calculations otherwise needed for optimal deci-
sions (rather than human brains having to do these calcu-
lations on the spot) [34,35].

Evolutionary constraints suggest additional reasons
why a cognitive bias might have been favored by natural
selection rather than relying on cautious-action policies
[33,36]: (i) efficiency – a cognitive bias might have been
biologically cheaper to produce or operate; (ii) speed – a
cognitive bias might have allowed faster responses; (iii)
evolvability – a cognitive bias might have been more
readily available due to pre-existing cognitive machinery;
and (iv) the adaptive landscape – a cognitive bias might
have offered a way to climb a local fitness peak (maximiz-
ing fitness given immediate options), even if a better solu-
tion lay across a fitness valley that natural selection could
not cross. Such valleys cannot be ‘crossed’ because a popu-
lation would have to systematically endure fitness damage
on the way, which selection would halt.

In short, cognitive biases are likely to have evolved
because there are biological limitations to decision making:
namely information, processing, efficiency, speed, evolva-
bility, and the adaptive landscape. New work in neurosci-
ence supports the notion that biases are often cognitive and
not merely behavioral [37,38]. Empirically, humans do not
seem to live up to the commonly vaunted ideal of optimal
Bayesian decision makers [39]. As Nobel laureates Daniel
Kahneman and Amos Tversky concluded in response to the
idea that people might be at least approximately Bayesian,
‘man is apparently not a conservative Bayesian: he is not
Bayesian at all’ [40].
Interdisciplinary convergence on error management
In this section, we present a series of examples of error
management (with more in Table 2). EMT was formulated
by evolutionary psychologists to explain how apparently
costly psychological biases might in fact be adaptive
[15,24–26,28,41]. However, we have found a wide range
of literature from different disciplines and domains in
which the same logic has been invoked. In essence, many
scholars have independently discovered the logic of error
management, demonstrating its robustness across widely
different methodological approaches, modelling techni-
ques, and domains of application. Some examples occur
in biological systems (reflecting error management as a
general engineering principle), such as the evolution of
allergies as ‘the price we pay’ for protection against para-
sites [24,42], preferential protection or repair to reduce
mutation rates in critical parts of the genome even if this
incurs a cost of lower protection for other genes [43], or a
bias in thermoregulation to manage asymmetric fitness
costs of temperature increases and decreases [44]. In the
longer examples outlined below, however, we focus on
instances of error management in the minds or behavior
of individuals (reflecting evolved biases that exploit the
engineering principle of error management).

Varieties of error management

An early application of error management comes from
animal behavior. Ethologists coined the ‘life–dinner prin-
ciple’ to explain why it is better to err on the side of caution
when foraging around predators (it is better to miss a meal
than lose your life) [45]. This was generalized into a large
literature on balancing the risks of alternative decisions,
most notably in optimal foraging theory (for reviews, see
[19,46,47]). For example, Bouskila and Blumstein [48]
showed that predation-hazard assessments, which by their
nature are imperfect, can become biased. They found a
‘zone of tolerance’ in which decisions should be biased
toward overestimating predation risk. In this region, over-
estimation was marginally costly to expected fitness but
less so than the potential costs of predation. As would be
expected, the degree and direction of such a bias varies
with context (Box 1) [49]. In short, these studies identified
error management – in this case, a bias in the assessment
of foraging and predation risk.

In a different area of animal behavior, biologist R.
Haven Wiley applied signal-detection theory to animal
communication [50]. He identified the matrix of false-posi-
tive and false-negative errors and argued that animals
commonly make mistakes in the service of attempting to
avoid bigger mistakes. Uncertainty was evident in the fact
that signals are hard to discriminate, especially at long
range, in aggregations of multiple individuals and where
there is deception. Depending on ecological parameters,
the differential costs of errors can lead to ‘adaptive gull-
ibility’ (susceptibility to deception) or ‘adaptive fastidious-
ness’ (low responsiveness to signals). The latter scenario
may in turn lead to the evolution of exaggerated signals.
Again, we have an example of error management – in this
case, a bias to over- or under-value signals.

Psychologist Ryan McKay and philosopher Daniel Den-
nett published a target article in Behavioral and Brain
3



Table 2. Studies invoking error management

Study Discipline Focus Analytic strategy Conclusion

Pascal (1669) [60] Theology Belief in God Narrative logic ‘Pascal’s wager’: the costs of atheism and benefits

of belief in God are so great that one should

assume God exists (‘if you gain, you gain all; if you

lose, you lose nothing’)

Green and Swets (1966);

Swets (1992) [7,61]

Psychophysics Decision thresholds

(e.g., in defense,

aviation, and medicine)

Mathematical

model

Decision thresholds depend on the relative costs of

errors, benefits of correct decisions, and prior

probabilities of events

Egan 1975 [62] Psychophysics Signaling theory Mathematics and

experiments

A response bias can in some circumstances be a

better way of achieving decision goals

Bouskila and Blumstein

(1992) [48]

Animal

behavior

Antipredator behavior

in animals

Mathematical

model

Animals who overestimate predation risk have

reduced mortality relative to unbiased or

underestimating animals

Wiley (1994) [50] Animal

behavior

Animal signaling

systems

Mathematical

model

‘Adaptive gullibility’ (stable strategy of being easily

deceived) and ‘adaptive fastidiousness’ (stable

strategy of low responsiveness to signals) evolve

depending on the relative costs of errors and

benefits of correct decisions

Cosmides and Tooby

(1994) [35]

Evolutionary

psychology

Biases in economic

behavior

Narrative logic Specialized information processors (‘biased’ with

information supplied by natural selection)

outperform general-purpose, content-general

‘rational’ models of mind

Higgens (1997) [63] Social

psychology

Biases in human

psychology

Narrative logic Whether an individual is biased toward pursuing

pleasure or avoiding pain depends on

psychological needs and ideals

Tetlock (1998) [56] International

relations

Perceptions of enemy

intentions

Narrative logic States that overestimate the probability of other

states having aggressive intentions (and arming in

response) make a better error than assuming they

are benign and risking deterrence failure,

exploitation, or attack

Pacala et al. (2003) [64] Environmental

conservation

Estimates of environmental

harm from human causes

Informal

quantitative

model

‘Environmental alarms’ set too low because the

cost of inaction is huge relative to the cost of action

Haselton and Buss

(2000) [26]

Evolutionary

psychology

Biases in human psychology Narrative logic

and experiments

In courtship communication, selection favored an

overestimation bias in men’s inferences of

women’s sexual interest and an underestimation

bias in women’s inferences of men’s intentions to

commit to a long-term relationship

Nesse (2005) [24] Evolutionary

medicine

Immune and other body

defenses

Mathematical

model

False alarms expected and tolerated in defense

against harms with great costs

Haselton and Nettle

(2006) [15]

Evolutionary

psychology

Biases in human

psychology

Mathematical

model

‘Optimistic’ and ‘pessimistic’ biases differ by

domain depending on the relative costs of false-

positive and false-negative errors over

evolutionary history

Foster and Kokko

(2009) [53]

Evolutionary

biology

Superstitious behavior in

humans and animals

Mathematical

model

Selection favors strategies that lead to frequent

errors in associations of cause and effect as long as

the occasional correct response carries a large

fitness benefit

Johnson (2009) [30] Evolutionary

biology

Belief in supernatural

agents

Narrative logic Individuals who believe their actions are

observable and punishable by supernatural agents

might be more likely to avoid the costs of social

transgressions

McKay and Dennett

(2009) [31]

Philosophy False beliefs in human

psychology

Narrative logic True beliefs most often adaptive, but ‘positive

illusions’ sometimes have a fitness advantage over

true beliefs

McKay and Efferson

(2010) [32]

Economics and

psychology

Biases in human

psychology

Mathematical

model

Systematic departures from Bayesian beliefs can

be adaptive when Bayesian updating is constrained

Johnson and Fowler

(2011) [33]

Evolutionary

biology

Conditions under which

overconfidence can evolve

Mathematical

model

Overconfidence is an evolutionarily stable strategy

as long as benefits are sufficiently large compared

with costs, and there is uncertainty in the

assessment of opponents
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Sciences reviewing the evidence for adaptive advantages of
a wide range of ‘false beliefs’. They identified EMT as a key
potential driver of the evolution of such biases [31]. In
particular, they highlighted ‘positive illusions’ (overesti-
mating one’s qualities, control over events, and future)
[51,52] as false beliefs that plausibly confer adaptive
4

advantages. This offers another example of error manage-
ment – a bias that promotes success by increasing ambition
and perseverance.

Around the same time, evolutionary biologists Kevin
Foster and Hannah Kokko presented a model to explain
‘superstitious’ behavior, in which animals overestimate the



Box 1. Sources of variation in managing errors

Temporal constraints

Risk taking increases when time is running out and fewer

opportunities are available [65]. Consider the ‘Hail-Mary’ football

pass as the clock ticks down, the relaxation of mate choice criteria at

the end of the mating season or lifespan, or the approach of closing

time in a bar [66,67]. The optimal level of bias also depends on

aspects of life history such as strength, status, age, and hunger [68].

For example, small birds increase risky foraging behavior as the end

of the day approaches, as securing enough energy to get through

the night becomes critical [69].

Ecological constraints

Risk taking increases when options are constrained by context.

For example, as population density increases, energy reserves

among individuals drop and the probability of fighting over

resources – a risky strategy – increases [70]. Indeed, models suggest

that lethal fighting can evolve if the stakes are high enough [71].

Similarly, optimal foraging becomes more risky under certain food

distributions [20]. In general, environmental factors affect the

emergence and direction of bias [21,49].

Costs

Risk taking increases if the relative costs of false-positive and

false-negative errors change. Risks are more worthwhile if the prize

is greater. Humans appear to be particularly susceptible to these

kinds of change, because we readily envisage benefits (such as a

$10 million prize), but not probabilities (such as a 1 in 10 million

chance of winning it). Thus, more people enter the lottery when the

prize is higher, though the probability of winning remains

infinitesimal (and actually declines because more people are

competing for it).

Probabilities

Risk taking increases if the probability of success increases. The

total cost of false-positive or false-negative errors is actually the

frequency of errors multiplied by the magnitude of their cost. Thus,

even if the cost of errors remains the same, they might become

more tolerable if the prize is more likely to be won. Note that the

frequency of errors can depend on the environment (e.g., the

distribution of the problem in space), one’s own behavior (e.g.,

encountering the problem a lot or a little), or the behavior of others

(e.g., how often they compete, help, or interfere with the problem at

hand). This suggests a range of predictions for where and when we

should see a bias, how strong it is, and which direction it is in.

Opinion Trends in Ecology & Evolution xxx xxxx, Vol. xxx, No. x

TREE-1711; No. of Pages 8
association between the cause and effect of events. For
example, because the costs of predation exceed the costs of
hiding, evolution should favor mechanisms that overesti-
mate the probability that any noise signals a predator,
even when there is little or even no real link [53]. The logic
and model are strikingly similar to EMT: ‘natural selection
can favor strategies that lead to frequent errors in assess-
ment as long as the occasional correct response carries a
large fitness benefit’ [53]. Foster and Kokko made efforts to
model behavioral outcomes without making any assump-
tions about psychological beliefs. This was largely in rec-
ognition of the difficulty of modeling psychological
representations (who knows what animals really think?).
However, this approach also serves to expand the model’s
generality; without any preconditions about cognition, the
logic applies to any organism – whether bacterium, animal,
or human. The effect was powerful enough for them to
conclude that superstitious behaviors are ‘an inevitable
feature of adaptive behavior in all organisms, including
ourselves’ [53].

Finally, a recent model of the evolution of overconfi-
dence [33] that contained no EMT assumptions arrived at
remarkably similar conditions for the evolution of ‘opti-
mism’ developed within EMT [15,28]. Overconfidence was
favored as long as there was uncertainty in assessments
and the relative benefits of competing for some resource
were sufficiently large compared with the costs of fighting.
Again, the underlying logic explaining the success of the
bias is one of managing alternative possible errors to
maximize fitness over time. The authors show mathemati-
cally that the evolutionary logic underlying their model
yields behavior that is equivalent to a rational actor with
full information who incorporates a specific ‘risk premium’
(e.g., see [4]) into all decisions. The chief advantages of the
evolutionary model are that it: (i) shows that biases allow
actors to make equally effective decisions with much less
information; and (ii) explains the origin of otherwise arbi-
trary risk preferences by rooting them in specific environ-
mental contexts defined by the relative impact of costly
errors.

Differences and commonalities

What is striking about all of these studies (and others in
Table 2), few of which cited each other, is that they identify
biases as effective decision-making strategies because of
the asymmetric costs of false-positive and false-negative
errors made under uncertainty. This is a phenomenon that
has long been recognized in the biological literature as risk
sensitivity, as well as in economics as risk management
[19,20,46,47,54]. The logic applies to any decision made
under uncertainty with asymmetric costs – whether by
animals, humans, organizations, or machines. The fact
that the biases under study were very different, and in
very different domains, makes these works all the more
significant; the conditions for error management appear to
generalize across domains and types of actors (summarized
in Table 3 and Box 1).

The broad scope of error management
A framework for psychological biases

Haselton and Nettle argued that EMT accounts for various
psychological biases in three broad domains [15]: (i) pro-
tective effects in perception, attention, and learning (e.g.,
the sound of approaching objects, bodily protection from
harm, dangerous animals, dangerous people, food aver-
sions); (ii) biases in interpersonal perception (e.g., the
illusion of animacy, the sinister-attribution error, the so-
cial-exchange heuristic, sex differences in interpreting
courtship signals); and (iii) self-related biases (e.g., positive
illusions, the illusion of control).

Although this is an impressive list, EMT might be
considerably more general. All psychological biases entail
potential costs because they amount to false beliefs about
the world (note here that we say ‘bias’ as it is usually used
in psychology, meaning any distortion of reality). In many
cases, the costs of consequent decision-making errors
might be small. But any cost – however small – introduces
the possibility that there is a tradeoff between the costs of
false-positive and false-negative errors. If so, a bias can
serve to minimize these costs. For any given decision
domain, the odds that the costs of alternative errors have
been identical over evolutionary time is essentially zero.
Hence, error-management biases should be pervasive and
the norm in the animal world, not the exception. As noted,
only a small asymmetry is needed for the evolution of a bias
5



Table 3. Common elements in explicit mathematical models of error management

Model Basic conditions for EMT Costs of Conditions for

evolution of bias

Uncertainty Differential costs False positive False negative

Green and Swets (1966);

Swets (1992) [61,72]

Yes

(various examples)

Yes

(various examples)

Generally low Generally high N/A

Bouskila and

Blumstein (1992) [48]

Yes

(predation always

possible)

Yes Poor foraging Predation Large errors in

estimating the

risk of predation

Nesse (2005) [24] Yes

(environmental risks

unpredictable)

Yes Small

metabolic

costs

Illness N/A

Haselton and

Nettle (2006) [15]

Yes

(social interactions

hard to predict)

Yes

(various examples)

Generally

low

Generally high b/c > 1

(where b is

benefit, c is cost)

Foster and Kokko

(2009) [53]

Yes

(cause and effect only

loosely correlated)

Yes Wasted

time

Predation Moderate

(not weak or strong)

associations

between events

McKay and Efferson

(2010) [32]

Yes

(decisions inherently

noisy)

Yes

(various examples;

show these need

not be large)

Generally

low

Generally high Small cost

differentials;

constraints on

Bayesian updating

Johnson and Fowler

(2011) [33]

Yes

(relative capabilities

vary)

Yes Missed

opportunity

Defeat b/c > 3/2 (binary errors)

b/c > 0.7 (continuous

errors)

Opinion Trends in Ecology & Evolution xxx xxxx, Vol. xxx, No. x

TREE-1711; No. of Pages 8
[32,33]. Uncertainty is also likely to be the norm rather
than the exception. Few decisions, if any, are made in the
absence of uncertainty. Uncertainty arises for a host of
reasons, including the difficulty of predicting outcomes and
how different variables might interact.

We suggest, therefore, that most if not all psychological
biases can be recast in EMT logic, including major well-
established biases such as ingroup–outgroup bias, threat
sensitivity, and prospect theory (risk acceptance when
facing losses and risk avoidance when facing gains)
[4,11,14,23,55]. Many such biases were identified and ex-
amined without any explicit EMT logic, but they fit within
this broader framework. Humans are far from perfect
Bayesian decision makers, but natural selection has
Box 2. Complications and extensions of Error Management Theo

Perceptions

The applications of EMT are expanded further when we consider how

people perceive error management dilemmas. This poses some

interesting problems. First, people can misperceive the magnitude of

costs (and/or benefits). At the extreme, people might think false

positives are more costly than false negatives (or vice versa), when

the reverse is true. This could lead to especially damaging behavior.

Second, people can misperceive the probabilities of outcomes.

Humans are sensitive to the way in which probabilities are presented,

which can radically affect their judgments and decisions [10,73]. Of

particular importance, people tend to underweight the probability of

events, but this tendency is reversed for very low-probability events,

which are overweighted [23].

Third, there can be a mismatch between (real or perceived) cost

asymmetries in the modern environment and those characterizing

decisions during human evolutionary history. If our evolved cognitive

biases emerge reliably in diverse developmental environments, they

can lead us into damaging behavior somewhat irrespective of the

contemporary consequences.

Multiple agents

Most of the EMT literature considers individuals making decisions in

isolation. However, the problem might be magnified among two (or

more) individuals both facing an error management problem.

This can be illustrated with the classic human mate-search bias.

6

generated alternative decision-making heuristics that (ap-
proximating the Bayesian ideal) maximized fitness over
evolutionary time in the presence of asymmetric costs of
errors and the absence of certainty [34,35]. This diversity of
applications opens up a range of complications and exten-
sions for new research on EMT (Box 2).

A framework for phenomena beyond psychology

A primary benefit of the error management perspective is
that it helps us to organize our understanding of human
psychological biases, as outlined above. However, its un-
derlying logic extends to any system that experiences
differential costs of errors and uncertainty. Such systems
occur at many levels in animals and humans – whether
ry (EMT)

Evolutionary theory suggests that males should overestimate female

interest and that females should do the opposite, because of differing

costs and benefits of reproductive strategies between the sexes

[26,74]. However, if males are overconfident as a result, females

should compensate to discount this overconfidence, becoming coyer

still. Males in turn must increase their overconfidence further.

Multiplayer settings might thus lead to an arms race in which biases

become exaggerated (cf. [75]).

Interactions

EMT describes a solution to a very simple decision problem (do this

or that within a given setting). However, in reality decisions can be

complicated in several ways. For example: decision-making biases

might have evolved to solve a problem in one domain but then be

activated in other domains (such as ingroup–outgroup biases that

evolved in small-scale societies undermining larger-scale coopera-

tion in modern societies); multiple agents might be attempting to

solve a common problem with different actual or perceived cost

asymmetries (such as different states experiencing very different

costs and benefits from regulations on carbon emission); and one

bias might co-occur with contradictory biases acting at the same time

(such as overoptimism conflicting with many forms of negative bias).

Given the number of psychological biases and the complexity of

social interactions, how errors are managed in the real world

presents significant challenges.
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genes, biochemical processes, individuals, or groups. They
also occur in ecosystems, machines (e.g., smoke alarms),
commercial competition, the stock market, politics, and
medicine [7,24,25,56]. All such systems face the problem of
managing different errors under uncertainty, which can
lead to the emergence of adaptive biases – whether con-
sciously or not – that minimize the costs of errors over time.
All that is different is the unit and the mechanism of
selection. So, some applications of error management re-
flect the basic engineering problem of error management,
where humans can consciously or subconsciously arrive at
a bias that results in effective decisions. Other examples
reflect evolved biases that have exploited the engineering
principle of error management over evolutionary time,
producing biases optimized for the evolutionary past –
and which therefore may not work well today.

Accounting for disciplinary differences
How have so many researchers developed essentially the
same logic independently of each other? We suggest that one
important reason is that different disciplines tend to focus
on different aspects of Tinbergen’s famous four questions
about the causes of behavior: function, mechanism, phylog-
eny, and development [57,58]. For example, some authors
have focused on function (what problem do biases solve?),
whereas others have focused on mechanism (what cognitive
mechanisms give rise to biases?). Perhaps unsurprisingly, it
is ethologists and evolutionary biologists that have focused
on function (and thus biases evident in behavior) (e.g.,
[24,48,53,59]); psychologists have focused on proximate
mechanisms (and thus biases evident in cognition) (e.g.,
[31,32]) and economists have focused on a form of develop-
ment (and thus biases as a result of learning or Bayesian
updating) (e.g., [32]). Evolutionary psychologists lie some-
where in between, focusing on functional outcomes but also
being necessarily interested in cognitive mechanisms and
their interaction with information from the environment
[15]. It might therefore be no surprise that EMT developed
in the discipline of evolutionary psychology as an effort to
reconcile both cognitive and behavioral patterns.

Concluding remarks
Toward a common framework

Error management offers a unifying framework for under-
standing decisions made under uncertainty, wherever
there are asymmetric costs of false-positive and false-neg-
ative errors. Because most decisions are made with some
uncertainty, and because most outcomes have different
costs, error management offers considerable utility in
identifying, explaining, and even recommending biases
across a range of disciplines and applications. We have
aimed to draw attention to the diverse but convergent
recognition of the phenomenon of error management, com-
mon sources of variation in the effective management of
errors, and an evolutionary explanation for cognitive
biases as heuristics to exploit error management.

An evolutionary explanation for errors

The central message of EMT – that is, the application of
error management principles to understand human judg-
ment and decision making – suggests that occasional
‘mistakes’ are to be expected, and where they occur, they
can betray adaptive, not maladaptive, behavior. An evolu-
tionary perspective also offers ways to identify and predict
cases of ‘mismatch’, where error management biases that
evolved to deal with environments of our evolutionary past
are likely to cause damaging behavior in the modern
environment. The probabilities and costs of decision-mak-
ing errors in any given domain are likely to be very differ-
ent between the past and present.

In essence, we have a converging theory of the evolution
of error. Developing a framework to study this counterin-
tuitive logic can increase our ability to understand, and
improve, the way we balance personal, social, economic,
and political risks. Error management might therefore
help us to avoid the costly mistakes that have plagued
human history, while also taking the risks that have driven
remarkable feats of human endeavor.
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